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e 415 VL. OLS, Logit, Multivariate Logit, 2%
VA b, KAV, ey, Abz DI HrsE

o MIAEME: &5 BT (Lasso, Ridge) , ZE487k
(Bagging) , FEHLAR#M (Random Forest) ,
v (Boosting) , X HFRIENL (Support
Vector Machine, i SVM) , A T &K%
( Artificial Neural Network, &1 ANN)
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KNN for Classification

o XfTorZRIAE(Y NERARE), MR “%
HEZHN 7 (majority vote rule).
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Node Impurity Function
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Market Contagion: Evidence from the Panics of 1854 and 1857
By MorGaN KELLY AND CorMAC O GRADA*

To test a model of contagion—where individuals hear some bad news and commu-
nicate it to their acquaintances, who then pass it on, leading to a market panic—
requires a knowledge of the information networks of participants, something
hitherto unavailable. For two panics in the 1850’s this paper examines the behavior
of Irish depositors in a New York bank. As recent immigrants, their social network
was determined largely by their place of origin in Ireland, and where they lived in
New York. During both panics this social network turns out to be the prime
determinant of behavior. (JEL G21, N21)
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Net monthly closures
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FIGURE 1. CHANGE IN NUMBER OF ACCOUNTS
(NET CLOSURES) BY MONTH, 1851-1860
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VOL. 90 NO. 5 KELLY AND O GRADA: MARKET CONTAGION 1115
TABLE 2—DEFINITIONS OF VARIABLES
Panicked Account closed during panic

Previous deposits
Previous withdrawals
Closing balance
Length open

Years in United States
Occupation

Sex

District

County

Number of deposits made into account at annualized rate, excluding initial deposit

Number of withdrawals from account prior to panic

Closing balance if panicked, balance at end of panic otherwise

Number of months the account had been open prior to panic

Number of years the depositor had lived in the United States

Occupation: laborer (I), professional (p), or other (o)

Female or male

Depositor’s address given by grid coordinate of Phelps’s 1857 “‘New York City Street and
Avenue Guide’ (3b-6d); otherwise Downtown (dt), Midtown (mt), Uptown (ut), Long
Island (li), Brooklyn (bn), Staten Island (si), New Jersey (nj), Upstate (us), or other (oth)

Depositor’s county of origin in Ireland

Note: Panic is defined as the period from December 11 to December 30 for the 1854 data, and from September 28 to October

13 for the 1857 data.

2020/12/2
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FIGURE 3. NUMBER OF DEPOSITORS AND PERCENTAGE OF PANICKERS BY COUNTY OF ORIGIN
IN IRELAND, 1854 aND 1857

Note: Dark lines are boundaries of provinces.
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TABLE 4—CHARACTERISTICS OF PANICKERS: LOGISTIC REGRESSION

1854 1857 1854 1857
Intercept 0.4976 (0.5951%# 0.5747 0.6118%*
(0.2758) (0.2178) (0.3314) (0.2543)
Previous deposits 0.0139 0.0059 0.0062 —0.0037
(0.021) (0.0261) (0.0208) (0.0264)
Previous withdrawals 0.0225 0.043 0.0281 0.0389
(0.0173) (0.0303) (0.0182) (0.0306)
Closing balance —0.0018# —=0.001* —(0.001%* —0.0008
(0.0008) (0.0005) (0.0008) (0.0005)
Length open —0.0324%* —0.0116%* —0.034+* —0.0117#*=*
(0.0102) (0.0044) (0.0105) (0.0045)
Years in United States —0.0456% —0.0459%* —0.04% —0.0396%*
(0.0201) (0.0126) (0.0202) (0.0128)
Female -0.1171 (0.3581* —-0.1263 0.3627*
(0.2273) (0.1618) (0.2319) (0.1635)
Laborer 0.452# 0.2565 0.4945% 0.2124
(0.2133) (0.1572) (0.2182) (0.1591)
Professional —-0.4297 0.299 —-0.2398 0.3737
(0.7098) (0.4267) (0.7138) (0.4303)
Ulster —().824 7% —0.6116%**
(0.2951) (0.219)
Connacht 0.4871 0.025
(0.338) (0.2405)
Munster —0.0295 0.2065
(0.2617) (0.1916)
Density 0.0648 0.0882 0.0641 0.0882
Null deviance 602 1061 602 1061
Residual deviance 553 1001 537 087
Percent misclassified 35 39 32 36

2020/12/2

41



Logit with county fixed effects?

2020/12/2

When county-of-origin dummies were added
to the regressions in the first two columns of
Table 4, only Galway and Wexford in 1854
were individually significant. However, the
county dummies are jointly strongly significant:
the chi-squared statistic for the hypothesis that
their coefficients are jointly zero is 54 for 1854
and 72 for 1857. Using district-of-residence
instead of county-of-origin dummies, districts
4d and 4e were individually significant in 1854,
and district 4b in 1857. Testing joint signifi-
cance of all districts gave a borderline signifi-
cant chi-squared statistic of 30 for 1854, but a
highly significant 43 for 1857. If county of
origin is already included, the district-of-
residence dummies are jointly insignificant for
1854, but significant at 2 percent for 1857.
While these results suggest that social network
factors may play an important role in panics, we
need a technique that can handle factors with
many levels, and possible nonlinear interactions
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FIGURE 6. SCHEMATIC VERSION OF CLASSIFICATION TREES IN FIGURES 4 (1854, LEFT)
AND 5 (1857, RIGHT)

Note: The depth of the branches below each node indicates the relative importance of each
split in reducing the misclassification rate.
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Conclusion of Market Contagion Paper

2020/12/2

When we examined the behavior of these
depositors in the panics of 1854 and 1857, we
found that whether an individual panicked or
not depended strongly on how long they had
lived in America, and how long they had been
with the bank. The most important factor in
whether they panicked, however, was county of
origin. Depositors from one set of counties
tended to close their accounts in both panics,
while otherwise identical individuals from other
counties tended to stay with the bank. Our re-
sults show that individual behavior depends not
only on private information but on access to the
information and opinions of other group mem-
bers, and raises the possibility that a handful of
influential individuals can have a lot of power
over group opinion,
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Recursive partitioning for heterogeneous causal effects

Susan Athey®! and Guido Imbens?

*stanford Graduate School of Business, Stanford University, Stanford, CA 94305

Edited by Richard M. Shiffrin, Indiana University, Eloomington, IN, and approved May 20, 2016 (received for review June 25, 2015)

In this paper we propose methods for estimating heterogeneity in
causal effects in experimental and observational studies and for
conducting hypothesis tests about the magnitude of differences in
treatment effects across subsets of the population. We provide a
data-driven approach to partition the data into subpopulations
that differ in the magnitude of their treatment effects. The approach
enables the construction of valid confidence intervals for treatment
effects, even with many covariates relative to the sample size, and
without “sparsity” assumptions. We propose an “honest” approach to
estimation, whereby one sample is used to construct the partition and
another to estimate treatment effects for each subpopulation. Our
approach builds on regression tree methods, modified to optimize for
goodness of fit in treatment effects and to account for honest esti-
mation. Our model selection criterion anticipates that bias will be
eliminated by honest estimation and also accounts for the effect of
making additional splits on the variance of treatment effect estimates
within each subpopulation. We address the challenge that the
“ground truth” for a causal effect is not observed for any individual
unit, so that standard approaches to cross-validation must be modi-
fied. Through a simulation study, we show that for our preferred

2020/12/2

Within the prediction-based machine learning literature, re-
gression trees differ from most other methods in that they pro-
duce a partition of the population according to covanates,
whereby all units in a partition receive the same prediction. In
this paper, we focus on the analogous goal of denving a partition
of the population according to treatment effect heterogeneity,
building on standard regression trees (3, 6). Whether the ulu-
mate goal in an application is to derive a partition or fully per-
sonalized treatment effect estimates depends on the setting;
settings where partitions may be desirable include those where
decision rules must be remembered, applied, or interpreted by
human beings or computers with limited processing power or
memory. Examples include treatment guidelines to be used by
physicians or even online personalization applications where
having a simple lookup table reduces latency for the user. We
show that an attractive feature of focusing on partitions is that
we can achieve nominal coverage of confidence intervals for
estimated treatment effects even in settings with a modest number
of observations and many covanates. Our approach has applica-
bility even for settings such as clinical trials of drugs with only a
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Leo Breiman 1928-2005

Professor of Statistics, UC Berkeley
Verified email at stat.berkeley.edu - Homepage

Data Analysis  Statistics Machine Learning

ARTICLES  CITED BY

TITLE CITED BY
Random forests 52451
L Breiman

Machine learning 45 (1), 5-32, 2001

Classification and Regression Trees 43480
L Breiman, JH Friedman, RA Olshen, CJ Stone ”
CRC Press, New York, 1999

Classification and regression trees 43480
L Breiman *
Chapman & Hall/CRC, 1984

Bagging predictors 22445

L Breiman
Machine learning 24 (2), 123-140, 1996
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AR AAL

o XS IIZRBHEHEATH I

H

i) FE- A (resampling with

replacement), 75321 B4~ H Bi#E4< (bootstrap

samples).

o flith B BRI (A2, tbin B=500

XF T AR, R B AR DL SRR O I 45 SRR AT ] B

o XFTorIm, CReB ARV H TN 45 SR BT 22 AR

e
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Ensemble Model:
example for regression

Tree 1 Tree 2 Tree 3
é”?‘i — e
5 B i i
} ! |
0.2 -0.1 0.5
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Bagging

o T B BFEA (bootstrap samples) it
#E B K (aggregating), #44 “bootstrap
aggregating” , f4ic bagging.

« Baggingl) FZETReE T E, LR
A 7R 1) U AE B 22 (accuracy)
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FEAR B ) T 22 Al 4/
Var(\?):g—2
n

o iFREM R EAEKAERL), H15 5T H)
fiw 7= (bias) i /)

ﬂ-ll

o 1T bagging>k =l /7 Z (variance)
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B KEH Sk AR e i e 2\
RN VS, IR AR [ J

Table 2. Misclassification Rates (%) Table 5. Test Set Misclassification Rates

(%)
Data Set Eg ER Decrease
waveform 29.1 19.3 34% Data Set eg eR Decrease
heart 4.9 2.8 43%
breast cancer 59 3.7 37% letters 12.6 0.4 49%
ionosphere 11.2 7.9 29% satellite 14.8 10.3 30%
diabetes n3 239 6% shuttle 062 014 77%
glass 304 23.6 22% DNA 6.2 5.0 19%
soybean 8.6 6.8 21%

o VE: & NHEPRMHIFEIINAIRZE, M €5 A AR AT 1Y
MR Z . >KIFE: Breiman (1996)
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nol B Eé
—1 1+ =

7=H

sk Sk AR g e A
PR VS, ZRA&M 0

k

Iable §. Mean Squared Test Set Error

Data Set €g R Decrease
Boston Housing 20.0 11.6 42%
Ozone 239 18.8 21%
Friedman #1 11.4 6.1 46%
Friedman #2 31,100  22.100 20%
Friedman #3 0403 0242 40%

E: B ARPRMAF MR ZE, 1M €5 NEIRM -T2

MR Z . >KIFE: Breiman (1996)
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AH

WERY,Y,, Y, N iid., WA AR B B 5 22 Al 4

/Nn %

(HATRY,,Y,, Y, FHIR, WREAIIER T 2 — )

ANEYE/N n f5

“=AREE, W NEERT o ROLKE?

QA g A 2 8] 5 AN A= ? How to decorrelate ?
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£ kT A
Pk.ﬂl LNV

« Bagging RS Z (Al FH 98, 2RI H T
FH 7] ) R AR =

 Breiman (2001)#2H “FEHLARM” (Random
Forest)

« {EBaggingf) Al (1K 2x 1% Fbootstrap samples)

L LR AR ST A BN, Y B
0435 B (/A5 B ) A R4 ) 4 Z05
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M N \-._i-_.‘ Al trmvAarm o A ~
Eﬁ%ﬁhﬁijﬁzgég(bulum | aub II|JI |g)

o “BENIEFEIES” (random feature selection)f]
H 1) 2 A e S 2 TR A G (decorrelate)

o XFEIAN, EM m=p/3 (pPNEEITL)
o WHF4ER, B m=./p
o P m (LY mtry) BUeT203E, MRy “T

Z4” (tuning parameter)
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o R AL, NPEPLIEEE /N

(m=p ok p/3), JEkEL SR ERI4
1% 5

o (HIX[FHEYIFEM 2 BT AFE, M FRAE

i

FEALAR AR T 22

o SRR AMEE) TR (MSE) %
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Dnmm:nm\ [LI/LI/'I‘_:IFI
Daggulg/:l = HYJ 15

« BaggingyRandom ForestH]45 {7

o XFTREALARIN, @M=D, NIYRERIA

s AEREATR, ARSI A AR E R
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104 LI 7 & o E
P LNV INH Y WRE S

o mtry (BENLIEF T = E)
e number of trees

e node size (mMinimum size of terminal
nodes)
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Random Forest
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 Wager, Stefan and Susan Athey, 2018. Estimation and
Inference of Heterogeneous Treatment Effects Using Random
Forests, Journal of the American Statistical Association,
113(523), 1228-1242.

 Meinshausen, Nicolai, 2006. Quantile Regression Forests,
Journal of Machine Learning Research, 7, 983-999.

e Chen, Qiang and Zhijie Xiao, 2020. Robust Nonparametric
Confidence Intervals for Treatment Effects in Panel Data
Using Quantile Regression Forests, working paper.
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2018, VOL. 113, NO. 523, 12281242, Theory and Methods
Taylor & Francis Group

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION e
https://doi.org/10.1080/01621459.2017.1319839

W) Check for updates |

Estimation and Inference of Heterogeneous Treatment Effects using Random Forests

Stefan Wager and Susan Athey

Stanford University, Stanford, CA

ABSTRACT ARTICLE HISTORY
Many scientific and engineering challenges—ranging from personalized medicine to customized mar- Received December 2015
keting recommendations—require an understanding of treatment effect heterogeneity. In this article, Revised March 2017

we develop a nonparametric causal forest for estimating heterogeneous treatment effects that extends

: 3 . : : KEYWORDS
Breiman's widely used random forest algorithm. In the potential outcomes framework with unconfound-

Adaptive nearest neighbors

edness, we show that causal forests are pointwise consistent for the true treatment effect and have matching; Asymptotic
an asymptotically Gaussian and centered sampling distribution. We also discuss a practical method for normality; Potential
constructing asymptotic confidence intervals for the true treatment effect that are centered at the causal outcomes;

forest estimates. Our theoretical results rely on a generic Gaussian theory for a large family of random forest Unconfoundedness

algorithms. To our knowledge, this is the first set of results that allows any type of random forest, including
classification and regression forests, to be used for provably valid statistical inference. In experiments, we
find causal forests to be substantially more powerful than classical methods based on nearest-neighbor
matching, especially in the presence of irrelevant covariates.
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Quantile Regression Forests

Nicolai Meinshausen NICOLAIQSTAT.MATH.ETHZ.CH
Seminar fur Statistik

ETH Ziirich

8092 Zurich, Switzerland

Editor: Greg Ridgeway

Abstract

Random forests were introduced as a machine learning tool in Breiman (2001) and have
since proven to be very popular and powerful for high-dimensional regression and classifi-
cation. For regression, random forests give an accurate approximation of the conditional
mean of a response variable. It 1s shown here that random forests provide information
about the full conditional distribution of the response variable, not only about the con-
ditional mean. Conditional quantiles can be inferred with quantile regression forests, a
generalisation of random forests. Quantile regression forests give a non-parametric and
accurate way of estimating conditional quantiles for high-dimensional predictor variables.
The algorithm i1s shown to be consistent. Numerical examples suggest that the algorithm
1s competitive in terms of predictive power.

Keywords: quantile regression, random forests, adaptive neighborhood regression



AT BREL

N

K

NS

ISYUNVIRIVEAESE-N

73

2020/12/2



r‘r,{vlr/\/ P b == \/
o P TJT DL ) e K

o WY NESTEYARE, HERRomEEon F ()

, JY [ “'f‘leiq
, 0<g<l), I&HN

q:

SHi30” (population gt quantlle
Yo o AR LLTEE X

P(Y <yy) =F,(Yq)

o BEMRQIAIEL Yo 1

IR AR A S N PR g, /N

FTEET y, R Ng, 1RT Yo BIBERN 1-q

o IR R () PRI, WA Y, = F ()
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Ay =l e By A e v
RAT T AT B 1A TT DL =X

o KA Y IX BLESAR g AL 2Ny, o B
PLF g X3

q — |:y|x(yq)

o HHT &M RAR AR R, () M Tx, Wkt
£i Y IX KSR q 3R T X, TSN Y, (X)
, MR R AR %L (conditional quantile
function).
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Random Forest as Weighted Average

The prediction of a single tree T'(f) for a new data point X = z is obtained by averaging
over the observed values in leaf /(x, #). Let the weight vector w;(x, #) be given by a positive
constant if observation Xj is part of leaf ¢(x,0) and 0 if it is not. The weights sum to one,

and thus
1{XiERE{.r,9}}

#1j: Xj € Ryz9)}

The prediction of a single tree, given covariate X — x, is then the weighted average of the

wy(x, 0) = (4)

original observations Y;.i = 1,..., ,

T

single tree: [i(x) = Z wq(x, 0) Y;.
i=1

Using random forests, the conditional mean E(Y | X = x) is approximated by the averaged
prediction of k single trees, each constructed with an 1.1.d. vector 6, t = 1..... k. Let w;(x)
be the average of w;(#) over this collection of trees,

k
-ug(;;r:) . Z '2112'.(;]'.?_ Qf) (5)
t—1

The prediction of random forests is then

n
Random Forests: [i(x) = Z w2 ).
i=1



Quantile Regression Forest

It was shown above that random forests approximates the conditional mean E(Y | X = x)
by a weighted mean over the observations of the response variable Y. One could suspect
that the weighted observations deliver not only a good approximation to the conditional
mean but to the full conditional distribution. The conditional distribution function of Y,
given X — x, is given by

FylX =a) = P(Y < y|X =2) = E(lyy <y | X =)

The last expression is suited to draw analogies with the random forest approximation of the
conditional mean E (Y |X = z). Just as E(Y|X = z) is approximated by a weighted mean
over the observations of Y, define an approximation to £(lyy<,;|X = z) by the weighted
mean over the observations of 1yy <.,

n

X=2)=) wiz) ly,<y} (6)

i=1

F(y

using the same weights w;(x) as for random forests, defined in equation (5). This approxi-
mation is at the heart of the quantile regression forests algorithm.

2020/12/2 79



Quantile Control Method (QCM)

e Chen, Qiang, and Zhijie Xiao, "Robust
Nonparametric Confidence Intervals for
Treatment Effects in Panel Data Using Quantile
Regression Forest," 2020, working paper

o A

H

A,

“BEHLARM

R

HERAR EE

e Forthcoming R package gcm

2020/12/2

(random forest) BEAT 7 %L

X [H]
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Introduction

o Approaches to estimate treatment effects In
panel data with only one treated unit have
become popular in applied works, which
Include synthetic control method (Abadie and
Gardeazabal, 2003, Abadie et al., 2010), and
regression control method (Hsiao et al.,
2012).

« However, no pointwise standard errors or
confidence intervals for the treatment effects
have been provided in the literature yet.
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Contributions

 We propose a direct nonparametric construction of
pointwise robust confidence intervals using quantile
regression forest (QRF), and exploits cross-sectional

correlation to construct counterfactuals as in Hsiao et al.
(2012).

* An advantage of this approach is that it does not require
the post-treatment period to be large for inference.

 Monte Carlos simulations show good coverage
probability for the confidence intervals, which are robust
to heteroskedasticity, autocorrelation, and model
misspecification.
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A PANEL DATA APPROACH FOR PROGRAM EVALUATION:
MEASURING THE BENEFITS OF POLITICAL AND
ECONOMIC INTEGRATION OF HONG KONG
WITH MAINLAND CHINA

CHENG HSIAO.**¢ H. STEVE CHING® AND SHUI KI WAN¢d*

& University of Southern California, Los Angeles, CA, USA
3 City University of Hong Kong, Kowloon, Hong Kong
¢ WISE, Xiamen University, Xiamen, China
. Hong Kong Baptist University, Kowloon, Hong Kong

SUMMARY

We propose a simple-to-implement panel data method to evaluate the impacts of social policy. The basic idea
1s to exploit the dependence among cross-sectional units to construct the counterfactuals. The cross-sectional
correlations are attributed to the presence of some (unobserved) common factors. However, instead of trying
to estimate the unobserved factors, we propose to use observed data. We use a panel of 24 countries to
evaluate the impact of political and economic integration of Hong Kong with mainland China. We find that
the political integration hardly had any impact on the growth of the Hong Kong economy. However, the
economic integration has raised Hong Kong’s annual real GDP by about 4%. Copyright © 2011 John Wiley

& Sons, Ltd.

2020/12/2 WWwWw.econometrics-stata.com 83



0.0

007
T

Case Study
from Hslao et
al.(2012):

Y Real GDP Growilh Rale
0.05

0.03

Y=0

0.01

2301 401 2301 2601 9701

Figure 1. AICC: actual and predicted real GDF from 199301 to 199702

Political
Integration of
HK_CN with
mainland
China in 1997

Growlh Rate

a=Y Real GDP

2020/12/2 Time 84
Figure 2, AICC :actnal and counterfactual real GDP from 199703 10 200304



Case Study
from Hslao et

Y Feal GOP Growih Rote

'

G401 2301 SO0 $TG1 9801 9900 CGOGT 0101 0241 HI0Y

ECO n O m I C Figure 7. AICC: actual and predicted real GDP from 1993:Q1 to 2003:Q4
Integration of

HK_CN with
. 2 o
mainland o
. . = & R 4.2 /
China in 2004 £ O o -
IE ‘\\;.f‘
':T oag o501 0BG ;-._1
2020/12/2 e

Figure 8. AICC: actual and counterfactual real GDP from 2004:01 to 2008:0)1



Approach

A O tila
A Luantie

n
11

Danr
€ REgre

 We use regression quantiles of the posttreatment
counterfactual outcome to directly construct valid
confidence intervals of the treatment effects:

F’(Qy{)t (0!/2) < yﬁ < QYﬁ (1—05/2)) _

e Since Ay = Yy — Vi , we could plug in the expression
Vi = Yo — 4, 10 get

P(Qyﬁ (@/2) < Yy — Ay < <Q (1 a/Z))
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Confidence Interval for
Treatment Effects

» Since Y, =Y, during post-treatment period,
rearranging ,

P(yllt _leot (1—05/2) <A, < yllt _QYﬂ (05/2)) —1-q

e With consistent estimators:

P(¥h-Q,-a/2) <A, < ¥ -Q, (@/2))=1-a
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Consistency of Quantile
Regression Forests

 Meinshausen (2006) uses random forest to
estimate conditional CDF, then invert it to get

OR.

 Meinshausen (2006) provides a proof of
consistency for QRF under 1.1.d. assumptions

 We extend the proof to the time series case
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Application: Economic Integration
of HK_CN with Mainland China in 2004

5 S OQ T 3 S B S 28 B OR A A
TIFRCEPA) ¥ 2 4 7 (U 55 UEFARZE
ﬁ/%rb i 25 A N PN HL, BT PN BT A
S é/%ﬂliﬁ\lkﬂ’]/ﬁ)\@ﬁ I P A Gy (R A =7

_H /‘\1>.-

e Pretreatment period: 1993Q1 - 2003Q4 (44
quarters)

 Treatment period: 2004Q1 - 2008Q1 (17
quarters)
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Simulations

 We conduct simulations for the four DGPs In
Hsiao et al. (2012)

e Also simulations for DGPs under

heteroskedasticity, autocorrelation, and model
misspecification.

* Good coverage probability in finite samples
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Table 1. Coverage Probability for DGP 1

Yi? =a; +b, f, +b, £, + Uy

f,=0.3 fl,t—l T &y

f2t =0.6 f2,t—1 T &y

CP To=10 | Ty=20 | T,=30 | T,=40 | T,=50 | T,=60 | T,=70 | T,=80 | T,=90
N =10 0.803 0.897 0.926 0.922 0.936 0.934 0.948 0.943 0.951
N =20 0.828 0.883 0.902 0.924 0.931 0.946 0.949 0.954 0.955
N =30 0.794 0.9 0.919 0.931 0.951 0.943 0.966 0.96 0.962
N =40 0.786 0.875 0.912 0.941 0.945 0.951 0.947 0.962 0.952
N =50 0.811 0.904 0.911 0.933 0.947 0.957 0.935 0.957 0.955
N = 60 0.794 0.89 0.925 0.944 0.929 0.945 0.944 0.962 0.95
Notes: N is the number of cross-sectional units. T, is the pretreatment period.
2020/12/2 The nominal coverage rate is 95%. 03
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Table 2. Coverage Probability for DGP 2

yi(t) =a; +b, T, +b, T, + b Ty + Uy, f, =0.8 fl,t—l T &y

f,, =-0.6 1‘2,t_1 +&, +0.8¢,, fo, =& + 0.9¢,,,+0.4¢,

CP T,=10 | T,=20 | T,=30 | T,=40 | T,=50 | To=60 | T,=70 | T,=80 | T,=90
N =10 0.781 0.883 0.921 0.917 0.948 0.938 0.955 0.957 0.949
N =20 0.789 0.878 0.924 0.927 0.947 0.951 0.95 0.965 0.963
N =30 0.765 0.875 0.907 0.938 0.936 0.951 0.956 0.956 0.95
N =40 0.799 0.875 0.917 0.934 0.945 0.946 0.954 0.953 0.969
N =50 0.786 0.875 0.918 0.941 0.949 0.947 0.963 0.967 0.955
N = 60 0.756 0.874 0.931 0.936 0.938 0.953 0.955 0.96 0.955
Notes: N is the number of cross-sectional units. T, is the pretreatment period.
The nominal coverage rate is 95%.
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Table 3. Coverage Probability for DGP 3

Vi =0 +b T+, f =iid.N(0,1)
cP |T,=10 |T,=20 |T,=30 |T,=40 |[T,=50 |T,=60 |T,=70 |T,=80 |T,=90
=10 0.804 0.897 0.921 0.921 0.935 0.934 0.94 0.942 0.938
N—20 0.802 0.892 0.919 0.939 0.93 0.928 0.929 0.925 0.945
=30 0.813 0.876 0.927 0.929 0.923 0.941 0.933 0.945 0.929
=40 0.804 0.887 0.952 0.924 0.917 0.935 0.956 0.962 0.93
=50 0.827 0.896 0.92 0.926 0.935 0.948 0.941 0.938 0.951
=60 0.814 0.895 0.916 0.938 0.935 0.947 0.937 0.932 0.947

Notes: N is the number of cross-sectional units. T, is the pretreatment period.
The nominal coverage rate is 95%.
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Table 4. Coverage Probability for DGP 4

yi(t) =, +bi ft + U

f =095f  +¢,

CP To=10 | T,=20 | T,=30 | T,=40 | T,=50 | T,=60 | T,=70 | T,=80 | T,=90
N=10 | 0.727 0.848 0.843 0.893 0.895 0.915 0.901 0.921 0.914
N=20 | 0.723 0.835 0.868 0.887 0.889 0.926 0.919 0.921 0.925
N =30 0.72 0.842 0.863 0.874 0.902 0.913 0.92 0.925 0.924
N=40 | 0.758 0.817 0.863 0.877 0.899 0.892 0.933 0.931 0.92
N=50 | 0.761 0.831 0.874 0.882 0.893 0.902 0.923 0.924 0.923
N=60 | 0.748 0.816 0.875 0.889 0.899 0.925 0.907 0.913 0.939
Notes: N is the number of cross-sectional units. T, is the pretreatment period.
The nominal coverage rate is 95%.
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Table 5. CP for DGP 1 with Cross-sectional

Heteroskedasticity
CP T,=10 | T,=20 | T,=30 | T,=40 | T,=50 | To=60 | T,=70 | T,=80 | T,=90
N =10 0.788 0.888 0.906 0.912 0.933 0.933 0.932 0.943 0.944
N =20 0.798 0.897 0.91 0.939 0.946 0.939 0.955 0.954 0.955
N =30 0.784 0.869 0.917 0.939 0.933 0.938 0.948 0.945 0.952
N = 40 0.792 0.903 0.914 0.937 0.942 0.944 0.944 0.956 0.96
N =50 0.805 0.879 0.93 0.935 0.929 0.936 0.95 0.945 0.96
N =60 0.8 0.9 0.919 0.938 0.941 0.938 0.939 0.944 0.967
Notes: N is the number of cross-sectional units. T, is the pretreatment period.
The nominal coverage rate is 95%.
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Table 6. CP for DGP 1 with Within-panel

Autocorrelation

CP T,=10 | T,=20 | T,=30 | T,=40 | T,=50 | T,=60 | T,=70 | T,=80 | T,=90
N=10 | 0.791 0.897 0.915 0.926 0.934 0.94 0.941 0.941 0.948
N =20 0.79 0.87 0.909 0.923 0.939 0.942 0.953 0.957 0.949
N=30 | 0.789 0.885 0.924 0.936 0.926 0.938 0.95 0.945 0.961
N=40 | 0.808 0.879 0.915 0.921 0.938 0.945 0.95 0.947 0.957
N=50 | 0.772 0.887 0.917 0.918 0.952 0.949 0.937 0.953 0.959
N=60 | 0.801 0.898 0.919 0.935 0.944 0.937 0.939 0.954 0.95

Notes: N is the number of cross-sectional units. T, is the pretreatment period.
The nominal coverage rate is 95%.
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Table 7. CP for DGP 1 with
Heteroskedasticity and Autocorrelation

CP T,=10 | T,=20 | T,=30 | T,=40 | T,=50 | T,=60 | T,=70 | T,=80 | T,=90
=10 | 0.791 0.87 0.915 0.905 0.93 0.937 0.953 0.944 0.948
=20 | 0.767 0.89 0.906 0.927 0.95 0.928 0.947 0.94 0.949
=30 | 0.791 0.863 0.927 0.921 0.922 0.948 0.95 0.937 0.947

N=40 | 0765 0.883 0.92 0.926 0.945 0.943 0.947 0.952 0.958
=50 | 0.757 0.88 0.927 0.929 0.923 0.939 0.951 0.961 0.949
=60 | 0.783 0.895 0.896 0.919 0.94 0.936 0.945 0.952 0.959

Notes: N is the number of cross-sectional units. T, is the pretreatment period.
The nominal coverage rate is 95%.
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Table 8. CP for DGP 1 with
a nonlinear logit transform

CP T,=10 | Ty=20 | T,=30 | T,=40 | T,=50 | T,=60 | T,=70 | T,=80 | T,=90

N =10 0.814 0.888 0.896 0.907 0.919 0.909 0.918 0.913 0.92

N =20 0.834 0.888 0.894 0.924 0.914 0.921 0.908 0.92 0.927

N =30 0.807 0.892 0.901 0.927 0.915 0.915 0.924 0.933 0.924

N =40 0.812 0.903 0.913 0.909 0.922 0.932 0.915 0.928 0.938

N =50 0.84 0.879 0.902 0.913 0.921 0.934 0.921 0.93 0.933

N =60 0.821 0.903 0.91 0.924 0.921 0.931 0.92 0.924 0.938

Notes: N is the number of cross-sectional units. T, is the pretreatment period.
The nominal coverage rate is 95%.
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